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Overview

 Past Mars missions landed within 100s of km %
from desegnated target fenass
— Unguided lifting (Viking 1, 2) sesration £/ Deorbit burn
_ Unguided ballistic (Pathfinder, MER) S S
 New generation of Mars landers to deliver (gg?éggmm b

massive payloads to within 10s of km from sites i

of interest
— Lifting actively guided entry (MSL) 50 £t %

— High lift-to-drag ratio ¢ kn (19 500 fe) "
« Guided entry requires a reaction control system )\, Eamachuis

(RCS)
— Active control of direction of the lift vector

— Rate damping <7 Aeroshell
e (Guidance maneuvers take advantage of

dynamic pressure, so they take place in O O ‘ﬁ{?pmpmm

jettison

descent

hypersonic and supersonic segments of the e . bl
entry
— Effect of RCS on aerothermal environment can be
significant, impacting TPS
— RCS interference in aerodynamic characteristics
neds to be understood to reliably predict flight
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Near-capsule flowfield

Flow around MSL Capsule at Mach 18.1




Reaction Control Systems @

AWAN D
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Reaction Control Systems (cont.)

Several Candidate MSL RCS

/."' Piteh plane - XZ
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Jet-Wake Interaction

« Interaction of an underexpanded jet with crossflow BOW SHOCK
extensively studied

— Applicability of existing analyses to scientific M.,
planetary entry vehicles is limited

— Massively separated wake, jet is penetrating flows
of changing character

* Analyses and results are configuration specific

— Interaction with attached vs. separated flow, local
flow conditions

— Pointing of the jet, location on the aftshell Py
X (DISTANCE FROM SHOCK)
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Aerodynamic Effects

Viking-derived base correction
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Aerothermal Effects
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q, (Wicm’) P, (atm)

25.0 0.0120
18.1 0.00494
134 0.0073
a5 0.0087
6.9 0.0044
50 0.0035
3.6 0.0027
2.6 0.0021
1.9 0.0078
1.4 0.0013
1.0 0.0010
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RCS/Gasdynamic Interaction Heritage @

Apollo

Viking

Entry Vehicle Control, NASA SP-8028, November 1969.

— Apollo 7 reentry: “considerable pitch and yaw control activity in
the transonic region during the final 2 min before drogue
deployment*, from simulation they concluded that this was a
result of thruster jet interaction with flow around the vehicle and
strong winds.

NASA TM-X-1063, R. Jones, J. Hunt, Effects of cavities,
protuberances, and reaction control jets on heat transfer to the
Apollo Command Module

— Mention of interference patterns on aftbody caused by RCS

jets
NASA TN-D-6028, Dorothy B. Lee, John J. Bertin, Winston D.
Goodrich, Heat transfer rate and pressure measurements obtained
during Apollo orbital entries

— Heating on the leeside of the spacecraft increased during RCS
firings up to 5 times that measured between firings

Apollo

Attitude Reaction
Command Jets Fired

Pitchdown 2and4
Pitch up 1and 3
Yaw right 6and 8
Yaw left 5and7
Roll left 10 and 11
Roll right 9and 12

Blake, W. W., Polutchko, R. J.,”"Hypersonic Experimental
Aerodynamic Characteristics of Viking Lander Capsule,” Martin
Marietta Corporation, TR-3709012, May 8, 1970
— Aero/RCS interaction estimated in wind tunnel tests at M=20
using solid bodies to represent thruster plumes
— The data were inconclusive due to insufficient accuracy of the
low AOA data
— The recommendation was use a balance designed to measure
small C, and C_,, and large C, to minimize data uncertainties,
but this apparently was never accomplished for Viking
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Summary @
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 RCS can interfere with the aerodynamic characteristics of entry vehicle

— Changes in aerodynamics occur in both supersonic and hypersonic segments of
the entry trajectory

« Control gain and aerodynamic cross coupling can occur
* In extreme cases the authority of RCS can be negated

— Computational and experimental analyses help bound the phenomena

 Difficulties in both computational methods (wakes are hard to solve) and experiment
(moments are small in comparisson to the forebody moments)

* Impact of RCS on aerothermal evironments can be significant

— Aeroheating increase by an order of magnitude depending on the specifics of the
jet interaction

— Impact on TPS selection, cost, schedule

« Based on analyses performed to date, jet interaction with the flow around
entry vehicle is better understood

- 4 Paradigms have been developed to minimize destructive interference of RCS jets
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BACKUP

3/12/2008 12



EDL Systems

Table 1. Comparison of Mars Entry Capsules

Viking 1/2 Pathfinder MER A/B Phoenix MSL
Diameter, m 3.5 2.65 2.65 2.65 4.5
Entry Mass, kg 930 585 840 602 2919
Landed Mass, kg 603 360 539 364 1541
Landing Altitude, km -3.5 -1.5 -1.3 -3.5 +1.0
Landing Ellipse, km 420 x 200 100 x 50 80 x 20 75x 20 <10x10
Relative Entry Vel., km/s 4.5/4.42 7.6 5.5 5.9 >5.5
Relative Entry FPA, deg -17.6 -13.8 -11.5 -13 -15.2
m/(CpA), kg/m? 63.7 62.3 89.8 65 126
Turbulent at Peak Heating? No No No No Yes
Peak Heat Flux, W/cm? 24 115 54 56 243
Hypersonic o, deg -11.2 0 0 0 -15.5
Hypersonic L/D 0.18 0 0 0 0.24
Control 3-axis Spinning Spinning 3-axis 3-axis
Guidance No No No No Yes
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|deal Authority

Table 2. Comparison of ideal authority of Viking, MPL/Phoenix and MSL

N-m Kg-m? deg/sec?
My My M lyx vy 122 Ol Ay oz
Viking 1, 2 152.7 146/- 108 536 423 786 16.3 19.8/- 7.9
159.4 21.6
MPL/Phoenix 10.7 58.07 10.06 192 189 286 3.2 17.6 2
MSL 675.4 980.7/- 705 3055 3952 4836 12.7 14.2/- 8.4
1160 16.8
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EDL Sequence
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Algorithm/Grids

« Calculations in LAURA using 8-species Mars gas + ammonia as propellant

e Grids

— Baseline layout: coarse - 5M, fine - 40 M nodes
» Created by Victor Lessard, extends to engine chambers

— 2006 RCS and Proposed layout - 12M nodes
* Created using RTF MORPH tool and doesn't reflect any internal flow

« Solutions are computed at Mach 18.1, g=15.9 kPa
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Geometric Considerations

« Same amount of pressure applied to different
locations on the backshell wil produce different
moments about the CG

« Moment arms (L, Ly), computed from a
surface-normal through a point and the location
of the CG illustrate the regions of high
sensitivity of capsule moments to changes in
surface pressure

— In yaw, capsule moments are very sensitive to

change in pressure on the far side, and on the
parachute closeout cone

— In pitch, capsule moments are very sensitive to
changes in wind/lee shoulder regions; the
parachute closeout cone can also generate
significant torques if shocks/plumes impinge on it
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Backshell Pressures
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Intersecting plumes
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Backshell Heating
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